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Abstract 

The higher order contributions to various QCD processes are considered. 
The temu due to the exchange of an eikonal gluon between the incoming par- 

tons are studied. These terms dominate the high energy behaviour. This allows 
the extraction of the impact factor for each of these processes and hence the 

strength of their lowest order couplings to the QCD pomeron. After examina- 

tion of the relationship between the parts that are dependent and independent 
- 

of the subtraction point in the MS scheme, an alternative subtraction scheme 

is proposed in which most of the large correction arising in this kinematical 

region is absorbed into the glum distribution function. 
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1. Introduction 

There has recently been a great deal of interest in signals for pomeron exchange 

in perturbative QCD[1,2]. The picture of the pomeron which emerges is the sum 

of all graphs involving the exchange of two low 9s gluons joined together by other 

gluons forming crossed and uncrossed ladders. If 4s is sufficiently large, the methods 

of perturbative QCD are applicable. The sum of these graphs is referred to as the 

perturbative pomeron. This pomeron dominates the forward scattering amplitude 

of two gluons. In particular, the imaginary part of the pomeron exchange is the 

cross section for some process in which a single eikonal gluon is exchanged and that 

gluon emits further gluons which manifest themselves as minijets. These minijets 

have been shown in ref. [3] to give rise to a shift in the intercept of the pomeron away 

from a(0) = 1. To leading order we omit the minijets and consider the exchange of a 

single eikonal gluon. If one considers two jet production in hadron-hadron scattering, 

this exchange is present already in the lowest order contribution. 

Many other hard processes occur in lowest order without such an exchange. Gluon 

exchange in the t channel is part of the higher order correction to such hard scattering 

processes. For large values of s this gluon exchange in the t-channel is the dominant 

part of the higher order contribution (at least at the parton level). This term is the 

most important at high energies since, unlike the leading order expression, it does 

not fall off like l/a. The dimensions of the cross-section are carried by some other 

quantity, such as the transverse momentum or heavy quark mass, which remains 

fixed as s becomes large. It is this s independence which permits the interpretation 

as pomeron exchange, leading to a parton cross section & which is constant in s (up 

to minijet corrections). In this paper we ignore the minijet corrections. However we 

present our results in such a way that we believe that they will be useful as first steps 

in the calculation of even higher order terms. 

We consider the QCD corrections to three processes and show that the leading 

power piece has always approximately the same form. In calculating the contribution 

from eikonal gluon exchange and integrating over the phase space of the outgoing 

partons, one encounters a collinear divergence when the exchanged gluon goes on 

its mass shell. This collinear divergence is subtracted in the normal fashion[4] and 

absorbed into the parton distribution functions. Thus the perturbatively calculated 
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cross section (T for a process initiated by partons of type i and j may be written as, 

o.ij(S,m') = 
CJ 

dZld22 &;tjt(z1+zs, mZ) I’i<i(~l, ~)I’jnj(~z, C) (1.1) 
13 

The short distance cross section 5 is free from collinear singularities and is calculable 

as a perturbation series in the running coupling constant. The collinear singularities 

have been regulated by continuation of the dimension of space time to n = 4 - 2s 

dimensions. For example, in the MS factorisation scheme[5] the factorisation piece 

r is, 

where 

r;j(Z,S) = 

1 
(1.2) 

1 
-=~+1n47?7n. 
s E (1.3) 

Pij is the normal Altarelli-Parisi function[6] and +yn is the Euler constant. For a 

process with an observed massless parton in the final state, pi + ps + ps + X, the 

factorisation formula becomes, 

d+ldz$ rkk'(Q, 6) 
&d@‘. 

4 
““riTi(zlr E)rj~j(~z, c) 

d--lfiS (1.4) 

The short distance cross section c? is evaluated at resealed values of the parton mo- 

menta, $1 = =m,zj2 = zm,sk = p3/w 

The finite parts of the factorisation piece, I, are subject to a prescription am- 

biguity. One has the freedom to subtract any finite part along with the collinear 

divergence. At high energy we find that most of the leading power higher order cor- 

rections to the processes considered here can be removed by a suitable choice of this 

finite part. What this means, in effect, is that factorisation prescription dependence 

allows one to reduce considerably the coupling of the perturbative pomeron to these 

hard scattering processes. This leads to a gluon distribution which is different from 

the distribution defined in the MS factorisation scheme. Since the modification nec- 

essary to reduce the coupling to the QCD pomeron is proportional to l/z, the gluon 

distribution function is only affected at low z. We will discuss the effects of this 

alteration of the gluon distribution function in later sections. 
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2. High energy behaviour of heavy quark production 

In this section we consider the high energy behaviour of the photoproduction and 

hadroproduction of heavy quarks. In perturbation theory the short distance cross 

section for the photoproduction of heavy quarks of mass m and electric charge eq 

may be written as, 

CTj = +-W) (0) 
*2 iEll(~)+4n05~(P)+ln(~)~)(p)] +...}. (2.1) 

The corresponding result for the hadroproduction of heavy quarks is, 

k=F{,J f?‘(p) + 4*as J$‘(!‘(p) + In ($)$1(p) [ ] } (2.2) + . . . 

where p = 4ms/s and s is the square of the total parton-parton centre of mass energy. 

The labels i and j indicate the types of the incoming partons and p is the factorisation 

and renormalisation point. The diagrams which contribute in lowest order are shown 

in Fig. 1. The lowest order matrix elements squared obtained from these diagrams are 

given in Table 1. The notation vindicates the average and sum over initial and final 

colours and spins. By convention, the average over incoming gluon and photon spins 

is performed assuming n - 2 polarisations. The formulae are presented in n = 4 - 2s 

dimensions and the kinematic variables are 

rl = p1.n 2d -, ~21=p!!, p=-. 
PI .Pl Pl .Pz Pl .Pa 

(2.3) 

The expressions for the coefficients ~(“1 and f(O) which are obtained from the matrix 

elements in Table 1 are presented in Table 2. For gluon-quark scattering there is 

no leading order contribution to heavy quark production. Analytic expressions for 

the functions ~(‘1 and 7” can be found in refs. [7] and [8] respectively. Analytic 

expressions for the functions c(i) and f(i) are not available, although in refs.[7] and 

[S] a fit to numerical results is provided. Numerical results for c(i) for the photon-gluon 

process as a function of p are shown in Fig. 2, taken from ref. [7]. The corresponding 

results for photon-gluon scattering are shown in Fig. 3 taken from ref. [8]. As can be 

seen the leading order contributions vanish in the high s limit, so for sufficiently large 

energies these parton cross sections are dominated by the higher order diagrams which 
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involve the exchange of a spin one gluon in the t-channel. In this section we describe 

the analytic calculation of these dominant contributions in perturbation theory. 

We shall begin by studying the case of the photoproduction of heavy quarks. This 

problem has already been described in a somewhat different context in refs. [9,10]. 

Here we extend the calculation to give the results in n-dimensions. This is necessary 

to regulate the collinear divergences which are present when one uses a hard vertex 

to produce the exchanged eikonal gluon. 

The general result for the diagrams with one gluon exchange in the t-channel can 

be written as, 

g= ~Jd.)Ps3~iuw$L*~2 (2.4) 

where U,, and Lx are the upper and lower parts of the graph as shown in Fig 4. 

The relevant diagrams and momentum assignments for the 7~ process are shown 

in Fig. 5a. In the high energy limit the dominant contribution to the polarisation 

sum of the exchanged gluon is given by the replacement, 

9 PA --t 2PtP: -, 9 = 2p1 ‘pa. 
3 

Following ref. [lo] we perform a Sudakov decomposition of the momenta in the phase 

space integral. 

PLY = asp: + P3P; + t: 

8 = aP: + PP; + q; (24 

where pi . qT = pi . qT = pl . t3 = p1 . t3 = 0. The dominant contribution to the 

cross-section at large s comes from the region Q z m’/s,p Y m*/s and q* Y -$. 

We shall define the function I in n dimensions as follows, 

*=’ l 
4rs (27r)--1 Jl J d(p . q) ~“P,~“P,S(P: - mV(p: - mV”(p, + q - p3 -P,) 

(2.7) 

I describes the coupling of the eikonal gluon to the upper vertex at which the heavy 

quark pair is produced. It is closely related to the function known in the literature as 
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the impact factorjll]. In this paper we will refer to the function I defined by Eq. (2.7) 

as the impact factor. We further define the function K which describes the coupling 

of the incoming lower quark or gluon to the exchanged eikonal gluon, 

K = -$-c p-$:]. (2.8) 

With these definitions the result for the photoproduction cross section in the high 

energy limit may be written as, 

gij = Tql _ e) (4*)’ / dfs [&I,hEKfB] + O(i). (f$)~+~ (2.9) 

The sums on A and B run over the colours of the exchanged gluons. The results for 

the functions K. in the high energy limit are easily found to be, 

KAB _ as/J zL 1 
‘1 - --F6AB, K,AB = as$‘2N AB -76 

7r 
(2.10) 

N = 3 is the number of colours of quarks and V = N’ - 1 is the number of colours 

of gluons. The scale g is introduced in Eq. (2.10) to keep the coupling constant 

dimensionless in n dimensions. 

We now return to the calculation of the heavy quark photoproduction impact 

factor I,, as defined by Eq. (2.7). The calculation is performed using the Sudakov 

decomposition, Eq. (2.6), to define integration variables. The upper limit of the trans- 

verse momentum integral may be extended to infinity, if we neglect terms which are 

power suppressed at high energy. In this approximation we may combine denomi- 

nators using a Feynman parameter I and shift the transverse momentum integral to 

obtain, 

Jdtl(iZ)‘%da.A(~,u,,~). (2.11) 

The function A is defined as follows 

-1 
A($,a&) = 

J { 

dl: p’Tl[l- 6 - 2ars(l - czs)(l - 2r(l - z))] 

[ml + z( 1 - z)n’T’ + tr]r 
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and t’is a Euclidean vector in the transverse space, (t’ > 0). Note that the function 

A vanishes for small $. In the small & limit it is given by, 

-2 

45, aa, t?) = n;? L1 - E - 2dl- QZ)] + gmsz( 1 - z)a3( I - a3) 
[d + C]l [ml + t”13 

+ o(~~) 

(2.13) 
The continuation to n dimensions is necessary to regulate the singularities present 

at & = 0 when the impact factor is inserted into a formula such as Eq. (2.9). It is 

therefore convenient to oversubtract the impact factor at & = 0 to make the singular 

terms manifest. We therefore introduce the four dimensional impact factor, I-,, which 

is the limit of Eq. (2.11) as n + 4. For compactness of notation we express the four 

dimensional impact factor as follows, 

(2.14) 

In terms of this function h, the result for the full photon impact factor may be written 

as, 

(2.15) 

The prime in the above equation indicates the derivative of the function h with respect 

to its argument. The explicit form for the function h, is given in Section 4. At this 

point the only property of h, which we require is the weighted integral, 

h,(a) - a h!,(O) B(p’ - am*) (2.16) 

Inserting the full impact factor Eq. (2.15) in Eq. (2.9) we obtain the following result 

for the Tg cross-section. 

(ry8 = F{Np-iln(f$)] 

+ 
(4Tp2)1’ 

r(1 - s)r(2 - s) 
(!$‘N 1’ ($+< (; - is)} (2.17) 
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The short distance cross section is derived from the above result by factorising as 

given by Eq. (1.1). Only the branching on the leg with momentum p, gives a leading 

contribution. From Eq. (l.l), the singular part of the cross-section is expected to be, 

AP 1 as 
f7;j = --:g 

J 
d+a ~ig(p1~z~pz)Pgj(za), i = ’ + 11147~ -YE 

E E 
(2.18) 

& is the total parton cross section calculated in 7~ dimensions. In the high energy 

approximation the Altarelli-Parisi functions can be written as, 

P&) = A, P&z) = y. (2.19) 

Using the n dimensional result for the matrix element given in Table 1, we find that 

the end result for the MS counterterms is, 

(2.20) 

Subtracting Eq. (2.20) from Eq. (2.17) we obtain the final result for the short distance 

cross section for the photoproduction of a heavy quark, 

&,;p = ~Npn(q~]+O(f) (2.21) 

Eq. (2.21) is in agreement with the results for c$),‘,‘,?$ as defined in Eq. (2.1) and 

plotted in Fig. 2 in the high energy limit (p + 0). The corresponding result for 

the 79 process is simply related by a factor of V/(2Nz) expressing the relationship 

between Ks and Kp as shown in Eq. (2.10). 

gyq = ~qgln(~);] +c$) (2.22) 

We now turn to the calculation of the impact factor of the gluon which is slightly 

more complicated because of the presence of the three gluon coupling. The relevant 

diagrams are shown in Fig. 5b. The calculation proceeds in a similar way to the 

photoproduction calculation described above. The result for the impact factor of the 

gluon, as defined by Eq. (2.7), can be written in terms of the Sudakov variables as 

follows, 

/dtl(tl)-‘~da.B($,a.,?) (2.23) 
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where B is related to the function A defined in Eq. (2.12) above 

&,a,,~) = NA(+$ ,as,?) - &A($&) 1 (2.24) 

We define the four dimensional impact factor 1 introducing the function h,, 

r;“(q$7L’) = PB& 
7 h,(S) (2.25) 

Performing an oversubtraction about & = 0 we may write the fulI gluon impact 

factor as 

(2.26) 

The expression for the function h, is given in Section 4. The weighted integral of h, 

appropriate for the calculation of the cross section using Eq. (2.9) is given by, 

% 
$[h,(a) - a h;(O) 8(p* - am’)] = 

(2.27) 

Hence we obtain an expression for the unfactorised cross section for gluon quark 

scattering, 

+ 
(4xp*)ae 

qi - c)r(2 - c) 
($y ( ($$ (i - $L - &[A - ;c])} (2.28) 

The factorisation piece in the MS scheme can be derived using the n dimensional 

matrix elements of Table 1 and Eq. (2.18). 

(2.29) 
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Performing the factorisation by subtracting Eq. (2.29) from Eq. (2.28) the result for 

the gluon-quark short distance cross section is, 

Taking into account that either gluon one or gluon two can act as a source for the 

exchanged eikonal gluon the gluon-gluon heavy quark production cross section is 

obtained by multiplying Eq. (2.30) by an overall factor. 

Eqs. (2.30) and (2.31) can be seen to be consistent with the results for $),T,‘d plotted 

in Fig. 3 in the high energy limit. The analytic results given in ref. [12] for &sbp and 

rgq contain errors. 

3. Direct Photon Production in Hadron-Hadron Scattering 

The total cross section for the production of direct photons contains a mass sin- 

gularity, so we consider the cross section for the production of direct photons with 

transverse momentum .& larger than some fixed value &-. The short distance cross 

section for this process is given in perturbation theory by, 

+;j(& > p’T) = ~~~~){~~r,)+4~~~[.!:iu+lu(~),:)(~,!+...} (3.1) 

where 

P=--r “F p=fi, (3.2) 

The leading order graphs for this process are shown in Fig. 6. The resultant matrix 

elements calculated in n dimensions are given in Table 1. From these matrix elements 

one may calculate the explicit expressions for e co) which are given in Table 2. In next 

order, O(aai), the terms giving the leading power behaviour are shown in Fig. 7. 

The impact factor for direct photon production can be derived from the upper part of 

these diagrams. Defining the impact factor by Eq. (2.7) and performing the Sudakov 
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decomposition we obtain, 

where 

z,AB(&i;) = 6 
AB +c~~ ,8r(i - e) 

- 
2N +~r(i - 2e) 

xn;? d+bsin-” 4 dt^l (t7)-‘C(P;., czs, 0 

C(~T,%,~ = 
4crs(l - as) + 2cYZ(l -e) 

t?yt’- a&)~ 

(3.3) 

(3.4) 

and C$ is the angle between & and i: As in the previous section it is convenient to 

define the four-dimensional impact factor r,, 

(3.5) 

The impact factor oversubtracted about the point & = 0 is, 

+ (3.6) 

The integrals in Eq. (3.3) can be performed explicitly in four dimensions to give the 

following result for the function hq(a), 

hs(a)=[(2 2a ) 
3+1-lna In(l-a)s+~-2Lis(l-a)-7+--$ln(~~$ * (3.7) 

)I 
The function h, vanishes in the small a region, 

The necessary weighted integral of this function, subtracted at <n = 0 is given by, 

F [ 
2 h*(a) - a hi(O) 8( p’-a&?) =9$-ibt$ 1 

Once again the cross section can be written as 

w = x ql - e) (4r)’ J d+:: [-gzyq.q +0(i) (,jpff (3.10) 
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where KtE is given by Eq. (2.10) and I,“” is given by Eq. (3.6). The final result for 

the unfactorised cross section is therefore given by 

q& > I%) = C$i{ pn!$] 

(4nlv’ + r(l-E)r(i--) p’;! (Ejy ($ (f - $)} (3.11) 

In contrast to the processes in Section 2, these graphs have two sources of collinear 

divergences. One is the above-mentioned case where the exchanged gluon goes on 

mass shell and is removed by subtracting the Altarelli-Parisi function for a gluon 

emitted from a gluon convoluted with the leading order cross section derived from 

the graphs shown in Fig. 6b. The other divergence arises when the direct photon 

is collinear with the emerging quark and is present in the graph of Fig. 7b in a 

physical gauge. This divergence must be absorbed into the fragmentation function 

of the outgoing quark and is removed by subtracting the Altarelli-Parisi function 

for the emission of a photon from a quark P,, convoluted with the cross section for 

gluon-quark scattering. 

PyP(z) = ei [’ + “,- ‘)‘I (3.12) 

Retaining only the leading power terms we obtain the following relation between 

perturbative and short distance cross section, 

.&do& _ I as ---__ 
d”-‘pa z27r 

~%,(ps = rk/~) + d+ i’db&(pz = &) 
d”-‘& J 

1 dn-lj3 Ps,(~z) 

(3.13) 

Using the matrix elements squared given in Table 1, we find that the factorisation 

pieces corresponding to the two terms in Eq. (3.13) are, 

+a~ (4a#)’ 
CCiT ’ Cl = ($)I+~ r(l _ E) { (-;A+;)+(-;A+;)} (3.14) 

Subtracting Eq. (3.14) from Eq. (3.11) we obtain the final result for the short distance 

cross section. 

&& > ST) = A..-- “‘;F[+fln$] (3.15) 
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This formula allows us to extract the coefficients e;)(p) and $,1(p), defined in Eq. (3.1), 

in the limit p -+ 0. The results are 

=Z’(P) * $$g, $)b) --t -&$ (3.16) 

The complete form of the functions e,,(p) for aU values of p is shown in Fig. 8. This 

figure is obtained by numerical integration of the results of Aurenche et aL[13]. The 

high energy behaviour shown in Fig. 8 is in agreement with Eq. (3.16). 

4. Impact factors in four dimensions 

In this section we present a series of results on the impact factors in four dimen- 

sions. The impact factor of the photon in four dimensions is obtained from Eq. (2.11) 

after performing two simple integrations. The result is 

where 

?6*Bh, (2) b 

h+)=$ 
% 

& l+r(l-r) 
11 + ~(1 - z)a]’ (4.2) 

Eq. (4.2) is in agreement with the results of ref. [9]. After integration over the 

Feynman parameter E, the impact factor of the photon in heavy quark production 

can be written as, 
h 

The function F is defined as 

F(p) = 
4 

dz ’ 
p + 4x(1 - z) = 2m 

(4.4) 

The power series expansion of F for large and small p is: 

F(P) + l-G+& - $$ + WlP4) 

%J) * -;1n ($) + O(PZ) (4.5) 
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The result in four dimensions for the impact factor of the giuon can be obtained 

from Eq. (2.23). Introducing the function h, we find, 

where 

a:<;[1 - 2as(l - as)(l - 2+(1 - z))] [ml+a~r(l-r)q..] 

1 ’ (4.7) 

After integration h, may also be written in terms of the function F defined in Eq. (4.4), 

h,(a) = 2 (a - 2)(a + 4) 
3 

a F(%)+i-+-+a-l)+)+l]} (4.8) 

In the limit of small argument a we obtain for these impact factors, 

h,(a) = ;a+ O(a’) 

‘da) = [g - &&z + o(ay. (4.9) 

It is also useful to introduce the scaled impact factor which is defined as follows 

j,(,) = +, for k = -y,g, q. 

A plot of the scaled impact factors is shown in Fig. 9. At low & the plots exhibit 

a plateau as determined by Eqs. (3.8, 4.9). Thi s is expected from the discussion 

of ref. [14]. The fact that the functions h vanish linearly for small a can also be 

understood physically. A low momentum gluon cannot resolve the various coloured 

constituents of the upper blob. When the momentum pr becomes larger than the 

characteristic momentum in the upper blob, the participating partons are resolved 

and the cancellation between different diagrams no longer occurs. Consequently at 

higher values of & the scaled impact factors j, make a transition to a l/a behaviour 

(module logarithms). We may estimate the position of this transition by choosing the 

point at which the scaled impact factor js has dropped to half of its plateau value. 

j,(6.65) = i&(O), ]&I = 2.6m 
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j,(13.5) = ij,(O), 19~1 = 3.7m 

$4.75) = +j,(o), i&‘rl = 2.2 ip’Ti (4.11) 

Therefore the scale at which the cancellation between different diagrams ceases to 

occur because of the injection of an appreciable momentum into the upper part of 

the graph is a few times the mass or p’~. 

An issue of importance in heavy quark production is the relative magnitude of the 

gluon fragmentation contributions (such as the gluon splitting diagram shown in last 

graph of Fig. 5b) and the flavour creation diagrams. We define the flavour creation 

diagrams to be the diagrams shown in Fig. la dressed with final and initial state gluon 

bremsstrahlung. The distinction between the two types of diagrams has meaning only 

in the leading logarithm approximation. Let us introduce the oversubtracted impact 

factor, 3c, 

~(&m’,$) = [h,(s) -@(pa - q$) -$ hi(O)] (4.12) 

where hi denotes the derivative as before. Eq. (4.12) can be used to calculate the net 

contribution of the higher order diagrams shown in Fig. 5b, after factorisation in the 

MS scheme. This estimate is valid only in the high energy limit. The integral of 31 

which is relevant for the calculation of the total cross-section in gluon-gluon fusion is 

given in Eq. (2.27). 

In a Monte-Carlo program one attempts to give an exclusive description of a hard 

scattering event. After integration over all other momenta the Monte-Carlo programs 

should yield a result for the total cross section which agrees with the exact result in 

the leading logarithmic approximation. In practice this means that the function 

Ii is approximated by a function NMC which correctly reproduces only the leading 

logarithmic pieces. The hard scattering of two gluons is included in a Monte-Carlo 

program with some cut-off on the transverse momentum 4;? > &. As a model of the 

logarithmic terms included in a Monte-Carlo program in the high energy limit, we 

shall take 

The exact choice of the constant term present in the argument of the logarithm in 

Eq. (4.13) is undetermined in the leading logarithmic approximation. It is a matter of 

some delicacy since the Monte-Carlo programs are often used in a region in which the 

logarithms are not large enough to dominate numerically. In practice the particular 
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constant terms which are included will vary between Monte-Carlo programs. The 

choice of p and p. can be made independently in the Eqs. (4.12,4.13), subject to the 

constraint that they should lead the same total cross-section. In practice there are 

conflicting requirements on the choice of p and ~0. In the exact expression, Eq. (4.12), 

we wish to choose p to be small so that most of the physics of gluon radiation is 

described by the higher order matrix element rather than being incorporated into 

the structure function. In the Monte-Carlo function, Eq. (4.13), we wish to keep 

the scale ~0 large so that the leading logarithmic approximation is warranted. As 

a compromise solution we choose pa = 4.33m’ in Eq.(4.12) and pi = 477~’ in the 

approximate formula, Eq.(4.13). Other choices are clearly possible, but in this case 

both curves integrate to give the same total cross section. Using these choices for p 

and ~0, the scaled impact factors are shown plotted in Fig. 10. Note also that because 

of the astute choice for the constant piece in Eq. (4.13), the two curves coincide well 

for $ > 10mZ. It would be interesting to try and apply this matching procedure to 

a realistic Monte-Carlo program. 

5. Conclusions 

We have considered the leading power corrections to three hard scattering pro- 

cesses. The conclusions for the total cross sections are summarised in Table 3, which 

reports the numerical values of the terms which govern the asymptotic behaviour, 

as well as the choice of /J which leads to a cancellation of the leading high energy 

behaviour. A possible conclusion from these results is that the most appropriate 

choice for /I is given by p = km or p = k l$ where k is between 2.5 and 4. With 

a choice of k in this range the effect of higher order terms in the cross section is 

reduced. The amount of reduction can be calculated from Table 3. As a by-product 

of this investigation we have shown that the subtraction scale in the MS scheme has 

a direct physical interpretation, because the values of p in Table 3 and in Eq. (4.11) 

are approximately in agreement. The disadvantage of choosing the scale to minimise 

the high energy correction is apparent from Figs. 2, 3 and 8, where it is shown that 

this choice increases the size of the radiative corrections near threshold. 

We therefore tentatively propose another possibility. Consider a process with a 

single incoming line i. The perturbatively calculated cross section n and the short 
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distance cross section + are related by 

aj = ~j ~ rji(Z, ~) 
(5.1) 

The symbol 8 indicates the normal convolution. Some of the leading power correction 

to the processes considered above can be removed by modifying the factorisation 

pieces r on the incoming lines as follows, 

rqq(“,E) = a(1 - 2) - UP,, 

rw(+E) = -~(+(z) 

rgd2,4 = -g(+,,b) - k$-) 

rgg(z,E) = S(l- z)- g(+&)- ky) 

where P are the standard one loop Altarelli-Parisi functions and 

(5.2) 

The subtractions lYnq and rpp are those of the standard IWS scheme, but the subtrac- 

tions rgn and rsg are new. This is a further modification of the modified minimal 

subtraction scheme, but it will have little effect on most phenomenology, because 

few precision experiments are sensitive to the gluon distribution function. A suitable 

value for the constant k is 2.53. In the initial state factorisation scheme defined by 

this value of k we obtain 

cg -+ -0.108 

f(l) 
00 --t 0.006 

eg --P 0.049 (5.4) 

This leads to a reduction of the coupling to the QCD pomeron of at least a factor 

of 3.4. This will be accompanied by a change in the higher order corrections to the 

gluon structure function as determined in Deep Inelastic Scattering. The effect of 

our proposed renormalisation scheme is to move the major part of the QCD pomeron 
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into the low z behaviour of the gluon distribution, which is common to all semi-hard 

processes. 

In conclusion, we see that for several cases in which the pomeron couples to hard 

scattering processes at next to leading order, the large power enhanced correction may 

be removed by an appropriate choice of scale. This choice makes sense physically at 

high energy, but it increases the size of the corrections in the region near threshold. 

A second method is to factorise the correction into the low z behaviour of the gluon 

distribution function. This modification of the factorisation prescription changes the 

anomalous dimension at two loops. For gluon distribution functions compared at 

approximately the same values of n r, this modification of the evolution properties 

will have little significance. 
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Appendix A: Results for four quark production 

In this appendix we present a series of results on the high energy limit of the cross 

section for the production of two pairs of heavy quarks. 

i+j-+Q+&+Q+8. (A.11 

In terms of the impact factors this cross section is given by, 

1 % = ; --AB -1 Ii (qT,m2)y(&m2) 1 + 0 (9 (A.21 

In the asymptotic region the 94 integral can be taken to extend from zero to infinity. 

Inserting the expressions for the impact factors given in Eqs. (4.3) and (4.8) and 
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-- 
performing the integrals the result for the reaction ye + &Q&Q at high energy is in 

agreement with ref. 191. 

CT 77 = atop?,&.., kv = I/ 175C(3) _ !i! [,,, 72] = 9.58 (A.3) 

where C(3) = 1.2021. For heavy quark production by photon gluon fusion, yg -+ 
-- 

QQQQ, the result is, 

(r ‘Ig = $$L ho = z + & - &C(3) 1 5 1.51 (A.4) 

-- 
Lastly we give the result for gluon-&on fusion, 99 -+ QQQQ, 

0 4 k 
00=&y 881 1 -0.252 (A.5) 

Eq. (A.5) may be useful in estimating the backgrounds to B - i? mixing. 
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Figure 2: Photon-gluon coefficients defined by Eq. (2.1) 
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Figure 3: Gluon-gluon coefficients defined by Eq. (2.2) 
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Figure 4: Diagrams with spin one exchange. 

b) 

Figure 5: Diagrams for heavy quark production with spin one exchange. 
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b) 

Figure 6: Lowest order diagrams for direct photon production. 

b) 

Figure 7: Diagrams for direct photon production with spin one exchange. 
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Figure 8: Plot of direct photon production cross-section 
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Figure 9: Scaled impact factors j, 
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Process 

PI + Pl + P3 + P4 

q+if-+Q+Q 

s+s-Q+g 

r+s-Q+g eze$g2 

(1 - E)%*n ( 
(I- C)(Tj + T2’ - e) + p - 

4+9+7+4 

n+q-r+s 2e;gv/( 1 - E) 7; + 72” - e 

N” ( ) TlFl 

Table 1: Lowest order processes in n dimensions. 
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Process Qij 

C$ypd(P) $7(3 -P')W)-4+ 2PZ] 

f’-O’(P) Pll gg-32 + PII 

f:;‘(P) &[3bZ+ 2%7+1)IW) 

-4 - 5p - V( 10 + lip)] 

e’“-‘(p) 

99 

$$h3) - 

11, T(P) 

= 

;1n 

( s > 

4$(P) 5+u3~ + 11 

Table 2: Cross sections for lowest order processes with p = fi. 

Process (1) 
"ij 4;’ j I!?‘/$;’ 1 v p choice 

Ci’! : r -+ 6?0+ X 1 0.363 1 -0.186 / -1.95 1 IL = 2.65~~1 

f$’ : gg -+ Qg + X / 0.107 1 -0.040 -2.69 /A = 3.83m 

eg.) : qg --+ 7q + x 0.1669 -0.0928 -1.80 /I = 2.46 Ip+l 

Table 3: High energy behaviour of hard scattering cross-sections as defined in 

Eqs. 242.2 and 3.1. 
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Figure 10: Subtracted and scaled impact factor for heavy quark production 


